On Lagrangians with Reduced-Order Euler-Lagrange Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Reduced Euler-Lagrange Equations

Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...

متن کامل

Euler-Lagrange Equations of Networks with Higher-Order Elements

The paper suggests a generalization of the classic Euler-Lagrange equation for circuits compounded of arbitrary elements from Chua’s periodic table. Newly defined potential functions for general (,) elements are used for the construction of generalized Lagrangians and generalized dissipative functions. Also procedures of drawing the Euler-Lagrange equations are demonstrated.

متن کامل

Euler-lagrange Equations

. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

AV-differential geometry: Euler-Lagrange equations

A general, consistent and complete framework for geometrical formulation of mechanical systems is proposed, based on certain structures on affine bundles (affgebroids) that generalize Lie algebras and Lie algebroids. This scheme covers and unifies various geometrical approaches to mechanics in the Lagrangian and Hamiltonian pictures, including time-dependent lagrangians and hamiltonians. In our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications

سال: 2018

ISSN: 1815-0659

DOI: 10.3842/sigma.2018.089